
r -
~~~ C-

Pr -AD *056 761 TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES FIG 5/1

* NETWORK AUGMENTING PATH BASIS ALGORITHM FOR TRANSSHIPMENT PRO——ETC (U)
MAR 78 R BARR, .J ELAN, F GLOVER. D KLINGMAN N000t’4 75 C—0569

UNCLASSIFIED CCS—272 NL

I ___

~~~~~~~~~~~~~~~~

IjI

~iEjj I I
I

Is a

F~
- -

~~~~~~~~

— 

~~~~~~~~~~~~~~~~~ 

--.

~~~~~ 

—

~~~~~
-

- -

u

ilF

a>

ij CENTER FOR
CYBERNETIC

I STUDIES
The Universit y of Texas

Austin ,Texas 7~7 12

78 ~
-

~

- -

LEVEL~
(~~4~~~S-272 !

kf~
(A’ A NETWORK AUGMENTING~~ATH BASIS /

S.—.- / ~~— ~-::~ /

~~ / ALGORITHM FOR)JANSSHIPMENT ,-“

J PROBLEMS , I ~
C

ft

~

* Visiting Research Fellow, Department of the Treasury, Office of
Tax Analysis, Washington, D.C. 20220 (on leave from Southern
Methodist University, Dallas, Texas)

** Assistant Professor of Decision Sciences, The Wharton School, Universityof Pennsylvania, Philadelphia PA 19104

*** Professor of Management Science, University of Colorado, Boulder, CO 80302

**** Professor of Operations Research and Computer Sciences, BEB 608, The Univer-
sity of Texas, Austin, TX 78712

(
~~

)
This reaear’~frfas partly supported by ONR Contract N00014—76—C—0383 with Decision
Analysis and p~~~r~ 1~ Tno’4tvsq-and by Project NR047—02]., ONR Contracts N00014—
75—C—0616 andf~~~~ 4—75—C-4S69~~ith the Center for Cybernetic Studies, The Uni-
versity of Texas. JPa~~~~ uui~-14ui’ in whole or in part is permitted for any purpose
of the United St~~

’..- ~~~~~~~~~~~~~

7fl~~iq _ c~~~4~
CENTER FOR CYBERNETIC STUDIES

A. charnes, Director
Business—Economics Building, 203E

~ua ~~~~~~~~ hI lle un i vers ity Oi Lexas f or ‘~ubli ~~~~ ~~Pl~ved
Austin , Texas 78712 / ~~~~~~~~~~~

•
~~ ~~~~~~~~~ czr~d ~~~~

(512) 471—1821 UtlOfl
~~ Unlimited

,%
~

J,~
N ~ 7 ~ 00 6 ~~~~~~~~~~~

f I
ABSTRACT

The purpose of this paper is to present a new simplex algorithm for solving

capacitated transshipment network problems which both circumvents and exploits

the pervasive degeneracy in such problems. This generalized alternating path

algorithm is based on the characterization of a special subset of the bases that

are capable of leading to an optimal solution. With consideration restricted

to thea~i bases, fewer alternative representations of a given extreme point are

inspected. The impact on the number of degenerate pivots and problem solution

times is demonstrated by computational testing and comparison with other approaches.

I
~

NTIS
I DUC ~Ofl ~~~I ~~~~~~~ ~~~ ~~~ U I
I .t(ST~~~~~ 01
lint 4.

-- ~~~ ~~~~
-,

~—~~~~---- -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

- , - . ~~~~~~~~~~~~~~~ -~~~~~~~., -~~--,— _ _ _ _ _ _ _ _ _ _ _ _ _

1. INTRODUCTION

In this paper, a new primal simplex algorithm for solving capacitated

transshipment problems is presented. This method exploits the combinatorial

possibilities available in degeneracy to obtain significant theoretical and corn—

putational advances. An important theoretical aspect of the algorithm is that it

is finitely convergent. Cunningham [6] derived the same theoretical results in

his development of a similar algorithm. His excellent paper provides the first

breakthrough for handling degeneracy in capacitated transshipment problems

following the introduction of perturbation and lexicographical ordering techniques

for ensuring finiteness in primal simplex algorithms.

Degeneracy, however, not only creates a theoretical problem, but also con-

stitutes a major computational issue. In fact, compu tational studies have shown

the number of degenerate pivots executed when solving large capacitated trans-

shipment problems to range upward from 70%. The new primal algorithm was inde-

pendently discovered as a result of devising computational schemes for avoiding

and efficiently performing degenerate pivots. The motivation for the algorithm

came from practical experience, and the algorithmic design came from studying the

graph characteristics of degenerate bases.

• This presentation extends the work of Cunningham to include insights into

the computer implementation of the new algorithm. Labeling techniques are pro-

vided for implementing the algorithm and computational results based on

one such implementation are presented. These results demonstrate the merits

1

- .— -- .—~~~
-

2

of the techniques, with par ticular reference to computational eff iciencies

achieved in solution time and storage requirements. This algorithm may also

be viewed as an extension of those of [3, 4, 5] for solving assignment, semi—

assignment, and transportation problems. Thus this presentation provides a

bridge between earlier work in the literature and recent advances in network

methodology

Degenerate basic variables and pivots, which are particularly prevalent in

large network problems, result from the large number of possible alternative

basis representations of the extreme points. In order to reduce the number of

such representations considered (hence the number of possible degenerate

pivots) and to provide a mechanism whereby degenerate pivots can be exploited ,

the new primal simplex algorithm narrows consideration to a special subset of

bases: those with a network augmenting path (NAP) structure. The NAP struc-

ture is a generalization of the traditional alternating path structures used

in graph theory (e.g., in the context of matching problems (7, 8]) and also

of the generalized alternating path structures introduced in (51. If a net-

work problem has an optimal solution, then an optimal solution can be found by

considering only bases that have the NAP structure.

The algorithm, hereaf ter referred to as the network augmenting path (NAP)

algorithm, possesses the following computational properties:

(1) No tests are required to ensure that only bases with the NAP structure

are examined .

(2) The algorithm is finitely convergent without reliance on lexicographic

or perturbation techniques.

(3) In cer tain cases, the type of basis exchange (degenerate or non—degen—

erate) may be recognized prior to finding the entire representation of

an incoming arc.

r

— - -

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The computational results of Section 5 indicate that these properties pro-

vide a more efficient algorithm than other special purpose simplex network

algorithms [1, 2, 9, 12).

2. BACKGROUND

The capaci tated minimum cost f l ow  network or capa ci tated transshipment

problem can be stated as follows :

Minimize E c
1 
x~ (1)

(i,j)EA ~

Subject to: 
ICI

k 

xlk — x.~ — bk, kcN (2)

0 ~ Xjj ~ for (ij)cA (3)

where — {icN:(i,k)cA} and — {jcN:(k ,fleA}. In standard terminology A is

the set of arcs (i,j) of the network G(N,A) and N is the set of nodes. The

constant b
k 

represents the “requirement” at node k, which is frequently referred

to as the supply if b
k 

< 0 and as the demand if b
k 

> 0. Associated with each

node kcN is a dual variable ‘Tk 
called its node potential. An arc (i,j) is

directed from node i (the tail node) to node j (the head node). An arc (i,j)

is also said to be out—directed from node i and in-directed to node j. Thus,

in particular, ‘k 
is the set of tail nodes of arcs that are in—directed to node

k, and is the set of head nodes of arcs that are out—directed from node k.

The flow, cost, and upper bound of arc (i,j) are represented , respectively ,

by X
j j

~~ cij~ 
and U

jj • In the terminology of simplex (extreme point) solution

algorithms for networks, the reduced cost of arc (i,j)cA is — C
jj 

+ iT
1 

— 1T~~.

The objective is to determine a set of arc flows which satisfies the node re-

quirements and capacity restrictions at minimum total cost. 

~.— ~~~ - ---- ‘--- .~~~~.- . ~~~~~~~ -j



r 

- -—

~~~

-

~~~~~~~~~~~~~~~~~

. _ _

Graphical Structure of Network Bases

A bounded variable simplex basis for a network flow problem corresponds to

a spanning tree with ~~ — 1 arcs (where IN I denotes the cardinality of the set

N). An arc is called basi c if it is contained among those arcs in the basis tree

and is called nonbas ic otherwise. Each nonbasic arc hae a flow equal to 0 or to

its upper bound .

Once the flows on the nonbasic arcs have been set , the flows on the basic

arcs are uniquely assigned so that equation (2) is satisfied. If equation (3)

is also satisfied, this assignment of flows is a basic f easible solution . For

each basis, node potentials are assigned values that satisfy complementary

slackness ; that is, these node potential values are determined so that the re-

duced cost for each basic arc is zero. Figure 1 illustrates a spanning tree

basis for a ne twork problem. The arcs are drawn according to the direction they

receive In the network. The number beside each arc indicates the flow on this

Figure 1 Figure 2
Basis Graph Rooted Tree Basis Graph

NODE PRED CONF FLOW
1 None —— --
2 1 1 2
3 2 0 2
4 2 0 0
5 4 1 5
6 4 1 0
7 3 1 1

Table I
Represen tation of Rooted Tree Basis

_ _ _ _ _ _ _ _ _ _  _ _  ~~~~~~~~.,---



-. --.—. . - . . - - . - ______

S

arc imparted by the basic solution.

Rooting the spanning tree basis

The most efficient procedures for solving network flow problems [1, 9, 10,

12] are based on storing the basis as a rooted tree. A rooted tree is often

visualized as having its root node at the top with all other nodes in the tree

lying on directed paths leading downward from the root. Since such a tree more

nearly resembles a geneological tree than a botanical tree, an ancestor of x is

defined as any node on the unique path from the root to x (including x itself),

and a descendant of x is defined to be any node for which x is an ancestor. (An

ancestor or descendant of x other than x itself will be called a strict ancestor

or descendant.) The predecessor of x is Its first (closest) strict ancestor,

and a successor of x is any node for which x is its predecessor. The root node

has no precedessor.

When a basis is stored as a rooted tree, each basic arc is given an orienta-

tion which has nothing to do with Its actual direction in the network. To dis-

tinguish an arc ’s direction in the network from its orientation In the basis, the

basic arc (x ,y) is said to be conformably oriented (or just conformable) if its

orientation in the basis tree agrees with its actual direction in the network

(i.e., x is the predecessor of y), and is said to be nonconformably oriented

(or just nonconformable) otherwise.

Figure 2 illustrates the rooted tree representation of the basis shown in

Figure 1. The information required to represent this rooted tree can be efficient—

ly organized as shown in Table I. The arrays NODE and PRED contain the nodes and

the predecessors of the nodes, respectively. Associated with each node (except

for the root node) is a I or 0 entry in the CONF array which indicates respective—

ly, the conformability or nonconformability of the basic arc that connects



F, ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —-—-.-- -.

the node to its predecessor. An entry In the FLOW array identifies the flow in

the associated arc. (Note that the array NODE would not be stored in any imple-

mentation.)

Summary of the Network Simplex Method

The NAP algorithm is based upon a graphical interpretation of the simplex

method as applied to network problems. For completeness, the steps of this sim-

plex method specialization are summarized.

Step 1: Determine Node Potentials to Price Out the Basis.

Assume that a feasible basis (possibly containing artificial arcs) has

been determined and stored as a rooted tree. It is then necessary to deter-

mine node potentials TT
k 
for each node k so that the reduced cost equals 0 for

each basic arc (i,j). Due to the redundancy in the defining equations of the net-

work problem, one node potential can be set arbitrarily. Customarily, the node

potential of the root is set to zero. The remaining node potentials can be deter—

mined in a cascading fashion by moving down the tree and identifying the potential

for node j using the potential previously set for its predecessor, node I, and the

equation

c1~~
+7T~~— ir ~~~~0

if the basic arc connecting nodes 1 and j 18 conformable (i.e., arc (i , j ) ) ,

c~1
— it

1
+iT~~~~O

if the basic arc connecting nodes I and j is nonconformable (i.e., arc (j,i)).

Step 2: Identify the outgoing and incoming arcs.

The fundamental basis exchange step of the simplex method selects an incoming

arc and an outgoing arc from the set of nonbasic and basic arcs, respectively. 

~~~-.- — ~~~~~~~~
--

~~~~~~ 
--,- 



7

(a) The incoming arc : A nonbasic arc which is profitable [I.e., has zero

flow and a negative reduced cost or has saturating (upper bound) flow and a

positive reduced cost] is selected to enter the basis. If no such arc exists,

the algorithm terminates. In the latter case, the solution is feasible and the

current arc flows are optimal if no artificial arcs with positive flow exist;

otherwise, the problem is infeasible.

(b) The outgoing arc: The arc to leave the basis is determined by tracing

the unique basis path which connects the two nodes of the Incoming arc. This

basis equivalent path can be de termined by tracing the predecessors of the two

nodes to their point of intersection. An attempted change of the flow of the

incoming arc in its profitable direction (away from the bound it currently equals)

causes a change in the flows of the arcs contained In this basis equivalent path .

In order to maintain primal feasibility, the outgoing arc must always be an arc in

this path whose flow goes to zero or its upper bound ahead of (or at least as soon

as) any others as a result of a flow change in the incoming arc. Such an arc is

called a blocking arc. (This arc can, of course, be the same as the incoming arc

for the capacitated problem.)

Step 3: Execute the basis exchange.

The outgoing and incoming arcs swap their basic/nonbasic statuses to become

nonbasic and basic, respectively, whereupon a full iteration is completed and

the method returns to Step 1 with a new primal feasible basis.

In the following results, the convention will be followed that the incoming

arc be designated by (p,q) (directed from node p to node q in the network) if it

has 0 flow before the pivot step, and that it be designated (q,p) (directed from

node q to node p in the network) if it has saturating flow before the pivot step.

Node z will designate the first common node on the predecessor paths from node p

and node q to the root. Thus, the z—p path and the z—q path in the basis tree may



r v _ _ _

8

be referred to without ambiguity , where either (but not both) of these paths

may contain no arcs——i.e., possibly z p or z = q.

Basic Flow Changes

To characterize more precisely the flow changes which occur as a result

of a basis exchange step, the intuitive notion of increasing (or decreasing)

flow across a path from a descendant to an ancestor will be used.

Remark 1: A flow increase (decrease) across a path in a rooted tree basis from

a descendant to ancestor creates a decrease (increase) in the flow of conformable

arcs and an increase (decrease) in the flow of nonconformable arcs.

Proof: A flow change of t~ across a path causes a change of ~ In the flow of

arcs whose tree orientation coincides with their network direction and a change

of —~~~, otherwise. Since a path from descendant to ancestor traverses ttoncon—

formable arcs in accordance with their network direction and conformable arcs in

opposition to their direction, the result follows immediately.

A fundamental result which characterizes the exact flow changes that occur

as a result of a basis exchange step is now stated.

Remark 2: In a rooted basis tree, a profitable flow change for the incoming arc

(an increase if the arc is (p,q) and a decrease if the arc is (q,p)) decreases

(increases) the flow of all conformable arcs and increases (decreases) the flow

of all nonconformable arcs on the z—q path (z—p path) by a corresponding amount.

Proof: A flow change in the incoming arc results in a flow change to each arc in

the z—p path and the z—q path . In particular , a flow increase on arc (p,q) may be

viewed as sending a flow increase from q to z (i.e., from a descendant to an an-

cestor) along the z—q path and from z to p (i.e., from an ancestor to a descen—



_____________ _________

9

dant) along the a—p path. Since a fl~w increase in one direction on a path is

algebraically equivalent to a flow decrease in the opposite direction, a flow

increase from z to p is equivalent to a flow decrease from p to z (i.e., from a

descendant to an ancestor). Correspondingly , a flow decrease in arc (q,p) may

be viewed as sending a flow decrease from p to z along the a—p path and a flow

increase from q to z along the z—q path. Combining these statements with Remark

1, Remark 2 is obtained.

The use of the foregoing observations to identify the outgoing arc in a

basis exchange step is Illustrated as follows. Assume that  the starting basis is

the one given in Figure 2 and the incoming arc is (5 ,7 ) ,  which is currently at

its lower bound. The basis equivalent path for arc (5,7) consists of the a—p path

from node 2 to node 5 and the z—q path from node 2 to node 7. As flow is in—

creased on arc (5,7) ,  flow is increased on the path from node 7 tc node 2 and

decreased on the path from node 5 to node 2. The amount of flow change that can

be accommodated on the z—q path is determined by starting at node 7 and

tracing predecessor until node 2 is encountered . The flow on conformable arcs

(arc (3 ,7) )  is decreased and the flow on nonconformable arcs (arc (3,2)) is in—

creased until the flow on one of these arcs reaches a lower or upper bound and H
cannot be changed further without violating this bound . The allowable flow change

on the z—p path is similarly determined by starting at node 5 and tracing pre-

decessors until node 2 is encountered , increasing flow on conformable arcs (arc

(4 ,5)) and decreasing flow on nonconformable arcs (arc (4,2)) until further change

would violate a lower or upper bound . The arcs that limit the flow change most

restrictively qualify as blocking arcs. In this case, arc (4,2) Is already at

its lower bound and cannot absorb any flow decrease, and therefore qualif ies as a

blocking arc. When arc (5,7) is brought into the basis, arc (4,2) must be re—



- - -... -,~ -_-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _

10

moved (since there are no other blocking arcs). In addition, the basis exchange

is degenerate because no flow change occurs.

Special Updating Considerations

After the incoming and outgoing arcs have been selected, the basis exchange

Is completed by determining the updated flows on the arcs in the basis equivalent

path and updated node potentials for the new basis tree. Only a subset of the

node potentials change during a basis exchange step and these potentials can be

updated by simplified marginal calculations rather than determined from scratch

by solving the reduced cost equations. It is in fact possible to elect to change

only the potentials of the nodes in one of the two subtrees created by removing

the outgoing arc. For convenience in the following discussion, it will be assumed

that the subtree selected for the operation of updating node potentials is the

one that does not contain the root node (thereby assuring that the root node and

its node potential remain unchanged from iteration to iteration). Thus, for ex-

ample, the node potentials of the basis tree in Figure 2, which are updated as a

result of adding arc (5,7) and removing arc (4,2) from the basis, are those con-

tained in the subtree rooted at node 4.

Any implementation of the simplex method specialized to a graphical frame-

work , must provide the ability to perform two types of tree traces, or traversals :

an upward traversal to find basis equivalent paths and to update flows, and a

downward traversal to identify all nodes of the subtree whose potentials must be

updated as a result of a basis exchange. The most efficient procedure for per-

forming these traversals in terms of both computer memory requirements and solution

speed is the augmented threaded index (ATI) method [11]. The ATI method uses a

special list structure which consists of a predecessor function and a thread

function. Together these two functions (node labels) make it possible to identify 

- -~ - _ _~ ~~
- - -  

.



~~. ..~~~~~- . . -

11

eff iciently all predecessors and successors of a given node in the basis tree.

Figure 3 illustrates the thread fun ction for the basis tree shown in Figure

2. At the expense of another node length array of computer memory, further corn—

putational advantages can be achieved by augmenting the ATI method with the dis—

tance function [14 ] or the cardinality func tion [14]. (See reference [2] . )

The distance function for a given node indicates the number of arcs on its pre—

decessor path to the root. The cardinality function indicates the number of

successors of a given node (hence one less than the number of nodes in the subtree

rooted at the given node).

These labels can be integrated into the implementation of the new algorithm of

this paper, as will be shown, to minimize the effort spent in performing degenerate

pivots. Table II illustrates the predecessor, thread , distance, and card inality

function for each node in the basis tree shown in Figure 2. With thii background,

the fundamental definitions and relationships underlying the NAP alcoritha are

developed.

Figure 3

Thread Function



NODE PRED THREAD DISTANCE CARDINALITY

1 None 2 0 6
2 1 3 1 5
3 2 7 2 1

4 2 5 2 2
5 4 6 3 0
6 4 1 3 0

7 3 4 3 0

Table II
Label Functions for Rooted Tree Basis

3. NETWORK AUGMENTING PATH BASIS DEFINITION AND CONSTRUCTION

Fundamental Def initions

The f orward leeway of an arc (i , j)  is defined to be its net capacity to

absorb a flow decrease in the direction that coincides with its orientation in the

basis tree, or more precisely, to be

x
ii 

if (i,j) is conformable or

U
11 

— If (i,j) is nonconformable.

Correspondingly, the reverse leeway is defined to be its net capacity to absorb

a flow decrease in the opposite direction of its orientation in the basis tree, or

more precisely , to be

— x~~ if (i , j)  is conformable or

x
11 

if (i , j)  Is nonconformable.

An arc which has both positive forward and reverse leeway is defined to have

double leeway. Clearly , an increase in an arc ’s forward leeway is equivalent to

a decrease in its reverse leeway , and conversely. Thus , since a flow decrease in

one direction corresponds algebraically to a flow increase in the opposite direc— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
_ J

13

tion , the reverse leeway of an arc may also be viewed as its net capacity to

absorb a flow increase in the direction that coincides with its basis tree

orientation.

NAP Basis Structure

A rooted basis tree for a capacitated network problem is a NAP basis if

every arc (i,j) contained in the rooted basis tree has positive forward leeway.

It follows directly f rota the definition of forward leeway that a rooted basis

tree is a NAP basis if every zero flaw arc in the basis is nonconformable and every

saturated arc in the basis is conformable. A network augmenting path (NAP) is

any path supplied with an orientation for which the foregoing definition applies.

Thus, the path from an ancestor node to any descendant node in a NAP basis is a

NAP.

A NAP generalizes the concept of an ordinary alternating path in graph

theory , which consists of a sequence of edges whose odd members belong to one

category and whose even members belong to a second category , by viewing all edges

of the first category to be zero flow arcs whose path orientations conform to their

arc directions, and all edges of the second category to be unit flow arcs whose

path orientations do not conform to their arc direction. (No reference to capa—

citation is required.) This concept also extends the generalized alternating path

(GAP) notion of [5], which similarly assumes that odd arcs are directed compatibly

with their path orientations, and even arcs are direc ted otherwise, but which

allows capacitation and flows other than zero or one.

NAP Basis Equivalence

Consider the rooted basis tree shown in Figure 1. This basis does not satisfy

the definition of a NAP basis since a conformable arc has zero flow. In general,

~

-. -—

F V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

- —.. - -— --- -

~~

-

~~~~~~~

—

~~~~~

—,

~~~~
-.- _.-- ... .-

~~~-

14

it is clear that many bases for the network problem will not be NAP bases. Thus ,

the question arises whether a given basis can be given the NAP structure by a

proper orientation of the basis tree and/or by interchanging the roles of forward

leeway and reverse leeway (since it is entirely permissible to replace forward

leeway in the definition of the NAP structure by reverse leeway). A basis will

be called NAP equivalent if it can be endowed with the NAP structure in this

manner. Every nondegenerate basis is trivially NAP equivalent, due to the fact

that every arc has double leeway , and thus any orientation of the basis satisf ies

the NAP basis definition. The situation is more complex in the case of degeneracy

and the restrictiveness of the structure with respect to degenerate bases is

addressed in the following result.

Remark 3: A network basis is not NAP equivalent if any of the following conditions

hold:

(1) there exists a node whose incident basic arcs include four out—directed

arcs or four in—directed arcs such that two have zero flow and two have satur-

ating flow ;

(2) there exists a node whose incident basic arcs include two out—directed

arcs and two in—directed arcs all with zero flow or all with saturating flow;

(3) there exist any two nodes such that the incident basic arcs of the first

include two in—directed arcs and the incident basic arcs of the second include two

out—directed arcs, and where the flow is zero or saturating (uniformly) on these

four arcs ;

(4) there exist any two nodes such that the incident basic arcs of each in—

d ude two in—directed arcs or include two out—directed arcs, such tha t the flows

are zero on the two arcs associated with one node and are saturating on the two

arcs associated with the other node.

-~ -. - -~ -- . -- ~~~

15

Proof: The result follows from the fact that in each case one pair of adjacent

arcs implies that the standard definition of the NAP structure must be used , and

the second pair of adjacent arcs implies that a definition which interchanges the

rules of forward and reverse leeway must be used.

Generating a NAP Basis

In this section a procedure for constructing a NAP basis that contains the

same flows as any given non—NAP basis is developed . This procedure consists of

• two stages as. follows .

Stage 1:

Delete all arcs of the non—NAP basis tree whose flows equal their upper or

lower bounds . The remaining portion of the network is a forest , some of whose

trees may consist of isolated nodes . No orientations are assigned to these trees ;

that is, no node , isolated or otherwise, is assigned a predecessor index.

Stage 2:

This stage consists of one fewer iterations than the number of distinct trees

inherited from Stage 1. At each iteration, two trees of the current forest are

- joined, reducing the total number of trees by one. To describe this stage, the

distinguished node of an arc not in the forest is def ined to be its tail node if

the arc has zero flow and its head node if the arc has saturating flow. The opera—

tion of this stage then proceeds as follows . Select any two trees in the current

forest and add any arc joining these two trees whose distinguished node has not

been assigned a predecessor. (Subsequently it is shown how to specify such an arc

easily, though it may not be an arc of the original basis.) Then make this dis—

tinguished node the root of all nodes in its subtree, and let the other node of the

r - • .. -

~~~~~

..

~~~~~

-•

~~~~~~~

-

~~~

16

arc just added be the predecessor of the distinguished node , thus making it

the root of the extended subtree that includes the added arc. This assigns

pre~iecessor indexes to all nodes of the sub tree, but not to the root of the

extended subtree. Of course, the root of the extended subtree may already

have a predecessor by an earlier operation. The process repeats until only

one tree remains, whereupon any node of this tree without a predecessor is

designated the root of the entire basis, and the construction is complete.

A special comment applies to the implementation of Stage 2. At each iter-

ation (as will be shown) , there exists an easily specified set of nodes with-

out predecessors in each tree. Thus, for simplicity , one can legitimately add

any arc between the two subtrees that links one such node to another. In the

case of sparseness, where many arcs may not be present in the network, it may

be convenient to introduce an artificial arc between two such nodes (e.g., to

avoid a search among alternatives). This arc can then be assigned a “big N”

cost and a zero flow (thus making its flow compatible with the flow values of

the original basis, which likewise assigns a zero flow to the added arc once

the arc is created).

The characteristics of the forest generated by the foregoing procedure

are identified in the following lemma.

Lemma 1: At each iteration of Stage 2 of the NAP basis generating procedure, each

tree of the current forest contains a unique unoriented subtree (possibly equal to

the entire tree) which consists of one of the original trees inherited from Stage

1, and such that no node of this subtree has been assigned a predecessor index.

The remainder of the tree consists of a collection of fully oriented subtrees,

each rooted in the unique unoriented subtree by an arc that is one of the arcs added

-~~~~~~~~~~~~~ ~~~

17

during Stage 2 (though other arcs added during Stage 2 may not be among these) .

Finally , each of the oriented subtreea has the NAP basis structure, and no pre-

decessor index is ever altered by a subsequent operation of joining two trees.

Proof: The result follows by induction. Clearly, the stated conditions hold at

the beginning of Stage 2. Then, at each iteration, since the unique unoriented

subtree is one of the original subtrees inherited from Stage 1 (which may just be

an isolated node that has not been assigned a predecessor) , it follows tha . every

arc in this subtree has double leeway, and hence this subtree may compatibly re-

ceive any orientation whatsoever and still satisfy the requirements for the NAP

basis structure. The condition that the distinguished node of the added arc has

no predecessor avoids any conflict with previously assigned predecessors and

thus preserves any previously existing NAP basis structure. The specific orienta-

tion of the added arc likewise preserves the structure. Finally, the fact that

all of the oriented subtrees are rooted in the unique unoriented subtree guarantees

that any node of the latter may be made the root for the entire tree without con-

flicting with existing orientations. This completes the proof.

The following main result is a consequence of this lemma:

Theorem 1: The final tree produced by the NAP basis generating procedure is a NAP

basis, and assigns the same flows to all arcs as the original feasible network

basis (where arcs of the original basis that are not in the NAP basis constitute

nonbasic arcs for the latter , with flows equal to their upper or lower bounds).

The foregoing procedure for generating a NAP basis can, of course , also be

superimposed on any method for generating a “starting” primal basis for a minimum

cost flow network (which may require the introduction of artificial arcs with non-

zero flows), and thus serve as a constructive means for obtaining a starting NAP

basis.

- .. -- ,~ - - ~~~ • -~~-~~~~~~-

18

4. IMPORTANT PROPERTIES OF NAP BASES AND THE NAP ALGORITHM

A NAP basis possesses three fundamental properties which distinguish it from

bases normally given consideration by a primal simplex method. First, the struc-

ture of the basis allows one to characterize the portion of the basis graph in

which degeneracy can occur. Secondly, for any choice of an incoming nonbasic arc

in a basis exchange (pivot) step for a primal simplex method, there is a unique

outgoing arc which can be selected to leave the basis that will maintain primal

feasibility and preserve the NAP structure. Lastly, cycling through a series of

degenerate NAP bases is prevented without the use of external techniques such as

perturbation or lexicographical ordering. The remainder of this section provides

the proofs for these properties and states the rules of the NAP algorithm.

Theorem 2: Degeneracy in a rooted basis tree that possesses the NAP structure, if

it exists, must occur on the z—p path.

Proof: In a NAP basis, every arc has positive forward leeway. Thus, the existence

of a blocking arc on the z—q path immediately implies nondegenercy from Remark 2.

If the incoming arc is a blocking arc , the pivot is also nondegenerate. Thus, de-

generacy, if it exists, must occur on the z—p path.

In stating the remaining properties of a NAP basis, it is convenient to refer

to the augmented z—q path , designated as z—q—p path , from z to q and then to p

via the arc (p,q) or (q,p), according to the flow on the arc before the pivot.

The motivation for attaching the incoming arc to the z—q—p path is that this is

precisely the one of the two possible attachments (the other yielding a z—p—q path)

that preserves the NAP path structure for the current arc flows. For this purpose,

an arc on the z—p or z—q—p path is said to be higher than another arc on this path

if it lies closer to a and to be lower otherwise.

_ _

19

Theorem 3: The NAP basis structure is preserved by the pivot* if and only if

the outgoing arc is selected to be:

— the highest blocking arc on the z—q—p path if any blocking arc occurs on

this path , or

— the lowest blocking arc on the a—p path if no blocking arc occurs on the

z—q—p path .

Proof: If a blocking arc occurs on the z—q—p path (hence the pivot is nondegen—

erate), then the increase in forward leeway on the a—p path (corresponding to

the decrease in reverse leeway) simply reinforces the current NAP structure of

this path, and hence the path can be left intact. On the other hand, the decrease

in forward leeway on the z—q—p path destroys the NAP structure for any blocking

arc on this path (whose forward leeway is reduced to zero). Dropping the highest

blocking arc on this path, by selecting it to be the outgoing arc, thus preserves

the NAP structure above the outgoing arc (and is clearly the only choice that

will). Further, by the updating rule that maintains the current root, all arcs

below this arc on the z—q—p path (if any exist, i.e., if the incoming arc itself

is not the unique blocking arc on this path) are reoriented in the opposite sense

so that p becomes the ancestor of these arcs. The fact that the pivot is nonde—

• generate, and thus that the reverse leeway for each arc on the z—q—p path is

strictly increased (corresponding to the decrease in forward leeway) implies that

* HIt Is assumed that the standard rule is used for efficiently reorienting the
arcs of the basis af ter the pivot , without re—rooting (see e.g. , [11]). This
assumption is “non—restrictive” in that the customary process for re—rooting can
readily be shown to destroy the NAP basis structure whenever a blocking arc exists
on both the a—p and z—q paths (among other cases), and any other choice of a new
root only entails similar hazards (unless the path to the old root is entirely
free of arcs that have zero reverse leeway) but also requires other superfluous
calculations in order to implement the algorithm.

F .
-. -

~
-.--

~~~~ 
• 

~
-

~~~~~~~
-

• ,• ---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - 
~~1~~

20

each arc whose orientation has been reversed now has positive forward leeway,

thus maintaining the NAP structure. Finally, if blocking arcs occur only in the

a—p path , the applicable reversed orientation is again for the portion of the path

below the dropped arc, and while the NAP structure is automatically preserved on

the a—p path above any dropped arc (by the argument noted earlier) , this structure

will exist on the portion to be reoriented if and only if all arcs below the dropped

arc have positive reverse leeway after the flow change, which is equivalent to

requiring that the outgoing arc be the lowest blocking arc.

Network Alternating Path Algorithm

On the basis of the foregoing discussion, the rules of the NAP algorithm can

be stated as follows :

(1) Apply the initialization procedures of Theorem 1 to create a feasible

starting NAP basis for the capacitated transshipment problem (possibly containing

artificial arcs). Determine node potentials such that the reduced cost of each

basic arc is zero.

(2) Select any profitable nonbasic arc to enter the basis. If no profitable

arcs exist, the problem is solved.

(3) Determine the arc to leave the basis using the rules of Theorem 3.

(4) Execute a basis exchange step, reorienting the basis tree so that the

root node remains fixed and updating flow values and node potentials. Then return

to Step 2.

The special implications of the NAP basis structure for degeneracy are now

demonstrated, establishing the finiteness of a primal simplex algorithm restricted

to NAP basis structures. The following lemma, in conjunction with the preceding

resul ts, provides the key relationship on which this property is based.



r v  •
~~~~~~~~~~~~~~~~

-.- ...• • •••. .
~~~~~~~~~~~~~~

- .
~~~~~~

- _

21

Lemma 2: Every pivot that preserves the NAP basis structure (in accordance with

the rules of Theorem 3), while maintaining the root node potential constant (e.g.,

by the standard updating procedure of [11]), has exactly one of three effects on

the remaining node potentials of the network:

i) The outgoing arc is the incoming arc. In this case no node potentials

change .

ii) If the outgoing arc lies on the z—q path, then the node potentials

for a non—empty subset of the nodes strictly increase and the remaining node

potentials are unchanged.

iii) If the outgoing arc lies on the a—p path, then the node potentials for a

non—empty subset of the nodes strictly decrease and the remaining node potentials

are unchanged.

Proof: Recall from the convention concerning the specification of the nodes p and

q, that the incoming arc is identified as (p q) with reduced cost Cpq + lTp — 7T
q

< 0

if the arc has zero flow and is identified as (q,p) with reduced cost C
qp

+

lT
q

— it > 0 if the arc has saturating flow. Case i is obvious. Next suppose the

outgoing arc lies on the z—q path. The standard updating rule of [11] assigns the

same change in node potential to every node of the subtree rooted at p (af ter

reorienting the path from the dropped arc to p). This node potential change is

• precisely ~ (Cqp + lTq
— i t) if (q,p) is the incoming arc and L~ ~ (cpq + 11p

—

iT
q
) if (p q) Is the incoming arc. In each case, 1~ > 0. Finally , if the incoming

arc is on the a—p path, then the standard updating rule of [11] assigns a potential

change to each node of the subtree rooted at q, which is the negative of the change

previously indicated for each case. This completes the proof.

Theorem 4: The NAP basis algorithm is f inite and independent of the choice of

incoming arc.

-.- ..— .-- .-~~~~~~~~ •- ~~~~~.

—._________

22

Proof: It suffices to show that the number of degenerate pivots that can occur

In unbroken succession is finite since the method can only make a finite number

of nondegenerate pivots. By Lemma 2, the node potentials are changing in a uni-

form direction throughout a sequence of degenerate pivots and at least one node

potential changes on each pivot. Since the root node maintains a constant potential

and the values of the other potentials are thus uniquely determined for any basis,

it follows that no basis can repeat during this succession of pivots, completing

the proof.

5. COMPUTATIONAL CONSIDERATIONS

The rules of the NAP algorithm identify the arc to leave the basis as either

the highest or lowest qualifying arc on a particular segment of the basis equi-

valent path. The specialized labeling procedures developed for implementing primal

simplex network algorithms as described in Section 2 can be used to efficiently

identify these path segments and the outgoing arc; thus, it is possible to in-

corporate previously proven means for accelerating the solution process into the

NAP algorithm.

In the case of a degenerate pivot, the arc to leave the basis is the lowest

arc that qualifies on the specified path segment (i.e., the z—p path). Thus, as

soon as degeneracy is detected on this path, a pivot can be performed . By using

the special labeling functions to identify this path quickly , degeneracy should

be detected earlier , thus requiring less processing time to perform degenerate

pivots. In the case of a nondegenerate pivot, no disadvantage is incurred by

dropping the highest qualifying arc since it is necessary to conduct a full trace

of the arcs in the basis equivalent path in any event.

The unique form of the NAP algorithm should provide for computational effi-

ciencies over previous codes by

.

~

- -.. -—

~

- — -- -~~~~~ .~~~~~~~~~~~~~~~~~~~~~~~ .- - • .~~-. - - A

-~~~~~~~~~~-~~~~~ - _____

23

(1) using previously developed implementation schemes for minimizing the

calculations at each iteration and executing degenerate pivots relatively faster,

(2) explicitly bypassing all non—NAP bases so as to reduce the percentage

of degenerate pivots.

In order to test the validity of the above statements, it was necessary to

develop a computer code for the NAP algorithm and compare it against other effi-

cient codes for solving network problems.

The fastest primal simplex capacitated transshipment code currently avail-

able Is ARC—lI [2]. This code is written in FORTRAN, using a modular design with

several subroutines. The code uses the predecessor, thread, and cardinality func—

tions discussed in Section 2 and another function called the last node function

[2] to maintain and update the basis data.

ARC—Il was modified to incorporate the NAP algorithm by changing the outgoing

arc decision rule and substituting an artificial NAP—basis start for its usual

advanced start. This new code is called ARC-~-NAP.

To allow comparisons of the algorithms in isolation of other factors, identi-

cal pivoting strategies and starting bases were used in the codes tested. The

code referred to herein as ARC—It employed the artificial NAP-basis start, a move

which degraded the original code ’s solution times. Also, both programs used the

pivot selection procedures described in [9, 101. Therefore, the solution times re-

ported below can be greatly improved through the use of an advanced start and

candidate list type pivot selection rules.

The codes were tested on a common set of randomly—generated test problems

[13] which Included assignment and transshipment problems. Problem specifications

are given in Table III. Problems 1 through 5 are 400—node assignment problems,

problems 6 through 19 are 400—node transshipment problems, and problems 20 through

~~~~~~~~~~~~~~~~~~~~~~ -.



-~~~~~~~

24

23 are 1000—node transshipment problems. All problems were solved on a UNIVAC

1108 using the FORTRAN— V version ilA compiler. The computer jobs were executed

during periods when the machine load was approximately the same, and all times

are exclusive of input and output. The total time spent solving the problem was

recorded by calling a CPU clock upon starting to solve the problem and again when

the solution was obtained.

The solution times for each code are contained in Table IV. The results

show ARC—NAP to be uniformly superior to ARC—Il on the assignment problems and

1000-node transshipment problems. Based on the sum of solution times for these

problems, ARC—NAP is roughly 21% and 10% faster, respectively , on these problems

than ARC—Il. The times for the 400-node transshipment problems are approximately

equal for the two codes.

Table III
Problem Specifications

TOTAL
PROBLEM TOTAL NUMBER SOURCE SINK NUMBER
NO. NODES NODES NODES ARCS

Assignment 1 400 200 200 1500
Problems 2 400 200 200 2250

3 400 200 200 3000
4 400 200 200 3750
5 400 200 200 4500

Transshipment 6 400 8 60 1306
Problems 7 400 8 60 2443

8 400 8 60 1306
9 400 8 60 2443

10 400 8 60 1416
11 400 8 60 2836
12 400 8 60 1416
13 400 8 60 2836
14 400 8 60 1382
15 400 8 60 2676
16 400 8 60 1382
17 400 8 60 2676
18 400 8 60 1306
19 400 8 60 2443
20 1000 50 50 2900
21 1000 50 50 3400
22 . 1000 50 50 4400
23 1000 50 50 4800



~ •-- -~ 

25

Table IV

Solution Times in Seconds
on UN IVAC 1108

PROBLEM PROBLEM
TYPE NO. TOTAL TIME START TIME SOLUTION TIME

ARC—It ARC-NAP ARC-It ARC-NAP ARC-It ARC-NAP

Assignment 1 2.993 2.032 .036 .027 2.897 2.005
2 3.575 2.685 .031 .032 3.545 2.653
3 3.264 3.113 .030 .032 3.234 3.081
4 3.967 3.266 .036 .032 3.931 3.234
5 4.563 3.398 .037 .032 4.526 3.365

Sum of
Total Times 18.362 14.494

400-Node 6 2.226 2.478 .030 .029 2.196 2.449
Transship— 7 2.395 2.819 .031 .039 2.364 2.780
ment 8 1.872 2.177 .035 .033 1.837 2.144

9 2.822 3.141 .035 .047 2.787 3.094
10 2.062 2.195 .029 .037 2.034 2.158
11 3.971 3.812 .032 .036 3.939 3.776
12 2.129 2.089 .033 .035 2.097 2.054
13 2.996 2.807 .027 .032 2.969 2.775
14 2.536 2.506 .032 .035 2.496 2.471
15 3.317 2.958 .032 .037 3.285 2.922
16 2.462 2.279 .033 .031 2.429 2.247
17 2.654 2.193 .034 .028 2.620 2.165
18 2.122 2.574 .034 .038 2.088 2.536
19 2.791 3.159 .034 .040 2.757 3.119

Sum of
Total Times 36.355 37.187

1000—Node 20 9.718 9.808 .074 .076 9.643 9.732
Transship— 21 10.936 10.221 .075 .076 10.861 10.145
ment 22 12.236 11.644 .075 .074 12.160 11.570

23 15.196 11.962 .101 .076 15.095 11.886

Sum of
Total Times 48.086 43.635

______ 4



26

In order to pinpoint the areas in which computational efficiencies were

achieved , several problem statistics were collected. These included total num—

• ber of pivots and total number of degenerate pivots. In addition, for the 1000—

node networks, average time for performing a nondegenerate pivot and average size

of the subtree updated at each iteration were calculated. These statistics are

contained in Table V.

These statistics contradict the original expectation that the algorithm would

reduce the percentage of degenerate pivots. The percentage of degenerate pivots

increases uniformly for all problems. In terms of total pivots performed, there

is a decrease for the assignment problems and the 1000-node problems but an in— 
• -

• crease for the 400-node problems. In addition, the statistics show that the NAP—

algorithm requires more time to perform a nondegenerate pivot and upda tes a larger

subtree , on the average, at each iteration than ARC—It.

The computational efficiencies gained by ARC—NAP must, therefore, result from

performing fewer total pivots where a larger percentage of these pivots are de-

generate combined with the ability to perform degenerate pivots very efficiently.

These results suggest that the NAP algorithm is able to quickly scan through a

series of alternative basis representations for an extreme point until one is

found that allows a relatively “better” nondegenerate pivot to be performed than

in the standard simplex network algorithm. Fewer extreme points are examined

(and hence fever nondegenerate pivots performed) before optimality is reached.

The algorithm is therefore able to offset the extra computational effort required

in performing nondegenera te pivots and updating a larger subtree.

This study indicates that the NAP algorithm is more efficient (or no less

efficient) than current state—of—the—art network codes when an artificial start

and the pivot rules in [9, 10) are used. Further computational studies are

needed to determine why fewer extreme points are examined by the NAP algorithm and



27

X r.. NrINN 0
-4

0.

is .
mmmm

~Io 00 00
0 0 0 0

0 0 0 0

. 1.1

~~~~~ N~z io ~ m %O
N NNN

~-4> (ii
,-4 1C 0.

14’
N €4 N N
0 0 0 0
0 0 0 0

I ,-. .
0 0 0 0

Li z

0
0 4’

• Z In ‘001 m ~ N C’ ~ ~ .-i l’~ ~~ OOV ~ ~4 N 0-4 ~~ Cl ~~)~
•

~Z m m a ~er- ~ N N r - m N a IN~~ ID eN.-I Cl ~~0 N N N N 0 N in €4 ~ .4 In .4 N N ID N-I N ~~ CI 001.0 ‘o (‘1• • 4

_I — — ~ l ~I ID — — .-4 .-I — — — — .4 .4 ~ 4 — — .~ ~ m mm m m
41 -‘€a

14 s z 0 -~ In

N ~~ ~~ .1 W N ~~ N ID in N ID o m 0 ~ m ID In 0 N~~~~~ N ~~
0. .4 N .4 N ID ID in in N ~ . ~ .-4 01 in ~~ In Cl m IA ID N N

a-U-f ~~ IA IA IA in~~~ I A N~~~ 04 ’ I N I D O i n.4 ’ I n N ..~ I n I D N m m
1(0. .-I .-4 .-4 .-I .-4 N .4~~~~~~~~~~~~~~~~ I.4 N~~4~~4 .-4 .4 m m m ~~~~ IA

N

Z ICJ) m m 4 ’ O i N ID Om 001.-IC DN C 1 .~~~ N N Nr.0e m
~~ NIA C I C l O N O m C I O C I N N N C IIAONCI O •

~~~ —4Cl ’ D m 0
C’NClCI .’-I m IMmO O m O 4 ’ . - 4 . - I04’  m N O m N  ~~‘C -I .-I in -4 .-4 .-I .1 4 .-4 .-4 .-I .-I .l .-4 N €4 mm m N

~~ flh 0. • ‘ .4

• CI IA N
In N N

• Z O  CI~~~N.-4~~ ~~ m m N . - 4 0 I- l nN o . - 4 oqN - 4  .-4 03 .-InN .-I) mmm ~~m N ~~Io r.oIo m e1.e InNIomr.o ID I9~~~ 03 N N,~b-4 N0N10 03 0 m 0 3 m m~~~~~~~~~~~ inm03 N ~~CINm a
~ o. .4N.4 .-4 .-4 Cl . 1 - 4 .-I N.4 -4 .4-4 -I .-4 .-4 -I m mm4 ’~ ID
E4 N

4’ 4’ 4’
00 .4Nm~sIn 5’ ‘oN~~~ CIa .-4 Nm s I n lD r-~~~ CI 51 0 .-INI~ 5~Z 4 .-I .I .-4 .-4 .-4 .4 N N N N
0. . S ~~ I ~~0. 51 0.
~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

‘

C 51 51 Si Z m  •V ~~~i-I 51 .-I i.~~4l Z ø  ‘I -~~~4J 5 5 1  4 1 . ~~~ J •0 -.4 4I~5 d( 0 i ~~4I .Q 4 0 0C 4 ’ .O .~ 0 ~o~ •so Ii
~~~~ e~~so ~~~~ o 5 1 s 0 E-.~~~z ø~~~i. 0 -.4 O S ~~V~~i 0 -.4 0I 4 5l i~ 0 -.i0. ‘( 5 0. E~ 0. e14 10, 0. .-4 14 E 0. 5-. 0. •

V
-

~~ ~~~

-

28

the effects of various start procedures and pivot strategies on the performance

of the NAP algorithm. Refinements to the ARC—NAP code based on the insights

gained from suc’ udies promise even further improvements in solution times.

•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

REFERENCES

1. R. Barr, F. Clover, and D. Klingman, “An Improved Version of the Out—
of—Kilter Method and a Comparative Study of Computer Codes,” Mathematical
Progranwsing 7, 1 (l974), 60—89 .

2. R. Barr, F. Clover, and D. Klinginan, “Enhancements to Spanning Tree Label—
ing Procedures for Network Optimization,” Research Report CCS 262, Center
for Cybernetic Studies, The University of Texas at Austin (1976).

3. R. Barr, F. Glover, and D. Klingman, “A New Alternating Basis Algorithm for
Semi—Assignment Networks,” Research Report CCS 264, Center for Cybernetic
Studies, The University of Texas at Austin (1977).

4. R. Barr, F. Clover, and D. Klingman, “The Alternating Basis Algorithm for
Assignment Prob lems,” Mathematical Programming 13 (1977), 1—13.

5. R. Barr, F. Glover, and D. Klingman , “The Generalized Alternating Path
Algorithm for Transportation Problems ,” Research Report CCS 282, Center for
Cybernetic Studies, The University of Texas at Austin (1977), to appear in
European Journal of Operations Research.

6. W. Cunningham, “A Network Simplex Method,” Mathematical Programming 11 (1976) ,
105—116 .

7. J. Edmonds, “Paths, Trees and Flowers,” Canadian Journal of Mathematics 77
(1965), 449—467.

8. J. Edmonds, “Maximum Matching and the Polyhedron with 0—1 Vertices,” Journal
of Resea rch of the National Burea u of Standards 69B (1965) , 125—130.

9. F. Glover, D. Karney, and D. Klingman, “Implementation and Computational
Comparisons of Primal, Dual, and Primal—Dual Computer Codes for Minimum Cost
Network Flow Problems,” Networks 4, 3 (1974) , 191—212 .

10. F. Glover, D. Karney, D. Klingman, and A. Napier, “A Computational Study on
• Start Procedures, Basis Change Criteria, and Solution Algorithms for Trans-

portation Problems ,” Management Science 20, 5 (1974) , 793—813.

U. F. Clover, D. Klingman, and J. Stutz, “Augmented Threaded Index Method for
Network Optimization,” INFOR 12, 3 (1974) , 293—298.

12. D. Karney and D. Klingman, “Implementation and Computational Study on an
In—Core Out—of—Core Primal Network Code,” Operations Research 24 (1976),
1056—1077.

29



r’~ y ”~ -~~ 
,•—-,

~~~~~
•. ••

~~~~~
.. 

~~~~~~~~
— ‘-- - —

~ ~~~~~~~~~~
.--

~~
--

~~~~~~~
•
~~~~

,-—- - — - -‘

30

13. D. Klingman , A. Napier, and J. Stutz, “NETCEN : A Program for Generating
Large Scale Capacitated Assignment, Transpor tation, and Minimum Cost Flow
Network Problems,” Management Science 20 , 5 (1974) , 814—821.

14. V. Srinivasan and G. Thompson, “Accelerated Algorithms for Labeling and
Relabeling of Trees wich Applications for Distribution Problems,” JACM 19, 4
(1972), 712—726.

r • • • - •

~~~~~~~

-•.• • — -• ••.- -- - •,-

~~~~~~~~ 

Unclassified

—
S.-. IIfII Y CIiIt%IIII o IlIl fl

DOCUMENT CONTROL DATA - R & D

~~ •dl .il., -~.s,.. ,. ,.
~ ui!. , b.,.!j ..? .b~ h a. S .u..I ,,,.1. ~ ~~~ ..in.ai,. ti.v, ian,-.? b, u,,I.?vJ W hiS~ ,h.’ • . ~i’Sh.II ~~51~ifI i~ r Id.~ AhlJ,’J)

I UHII~ S NA I INI~ A C l i v , , v (t ’u,ponal. ..,*Ihol) 4a IIE~ ’OR T $~~CURI TI’ C L A S S I P I C A I ION

Center for Cybernetic Studies Unclassified
2b. GROUP

The University of Texas
I HL. l’ OIi l t i t l E

A Network Augmenting Path Basis Algorithm for Transshipment Problems

4 O f S C R I PT I V E NO T E S (T~.p. Ut ,*p.W S Ai ,d.ISIC t INIãv . IIalea)

~~. A U TUOI4ISJ (Fin ? n.m.. .Uddl. initial. Sail n.m.)

~ichard Barr Joyce Elam
!red Glover Darwin Klingman
S RLPORT D A T E 74’. T O T A L NO- OF P A GES j7b. NO. OF REFI

•
~ugust 1977 32 14
•a. C O NT R A C T OR G R A N T NO 9.. ORIG INATOR S R EP ORT NUM4’ER~ S5

N000 14-76-C-0383; 75-C-06 16; 0569 Center for Cybernetic Studies
b. PROJ E C T NO

NR047-021 Research Report CCS 272~
C. Sb. OTHER REPORT ROSS ? (Any othçr n,~~b.,. that may be a.a1 ..d

the. report)

d.
I D . DISIR,SUTIO N S T A T E M E N T

This docume nt has been approved for public release and sale ; it~ Tlistributi”n
is unlimited.

~~~ S U P P L E M E N T A R Y  NOTES 12 SPONSORING M I L I T A R Y  A C T • V I T Y

Office of Na val Research (Code 434)

\ Washington, D. C.
t~ A O $~~~~ A C T  -

The purpose of this pape r is to present a new simplex algorithm for solving
capacitated transshipment network problems which both circumvents and exploits
the pervasive degeneracy in suc h problems. This generalized alternating path
algorithm is based on the characterization of a special subset-of the bases that are
capable of ieadin8 to an optimal solution. With consideration restricted to these

• bases , fewer alternative representations of a given extreme point are inspected.
The impact on the number of degenerate pivots and problem solution times is
demonstrated by computational testing and comparison with other approaches.

7

f~fl FORM 1A 72 (PAGE I) . -I N O V S $ U ~~~ ~ Unclasstfted
S/N 0101 -507.681 I Securily Class i(ic .fton 

~-3l40•

-— 
.



•- — .,--.--•-

Unclassified
I 

• S.’ , 1 1111% t.i’.’.II I ,ItI” II

L I NII A L~~P4II S L I N A  Cr i  i 4 ’ O I , u S  _________ _________ _________ _________ _________ _________
l it ) I. I * I 1101 & * I 1 40 1 1  N

“ --‘I
Network

Transshipment

Degeneracy

Transportation

Optimization

Linear Programming

~~~~~ F ORM 4 A ~~~~ A
NOV SS J~~~~ j ’~~ ~~ CK) Unclassified

~~FN 05 02-01 4.9100 Secutity Ci.ssific~ tion A . ~ 409

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-


